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ABSTRACT

CYCLIC AND DYNAMIC FULL-SCALE TESTING OF A

PILE CAP WITH LOOSE SILTY SAND BACKFILL

Immanuel K. Runnels
Department of Civil and Environmental Engineering

Master of Science

Pile caps are used in foundation design to aid multiple single piles to act as a pile
group to resist lateral forces that may cause overturning moments. The pile cap and pile
group resist these forces by pile-soil-pile interaction, base and side friction along the pile
cap-backfill interface, and passive earth resistance. Passive earth resistance has been
neglected in design due to a limited amount of full-scale testing.

This research presents the results of a combination of hydraulic actuator and
eccentric-mass shaker full-scale testing of a pile cap with loose silty sand backfill to
quantify the contribution of the passive earth resistance to the lateral force resistance. The
test cap is 1.12 m tall and 5.18 x 3.05 m in plan view, connecting 12 steel pipe piles
(324mm O.D) placed in a 4 x 3 pattern with center-to-center spacing of 4.4 and 3.3 pile-

diameters in the long and short dimensions, respectively.
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The hydraulic actuator applied a static load to the system (backfill + pile group)
while the eccentric-mass shaker introduced cyclic and dynamic loading to the system.
The passive earth resistance accounted for approximately 22% of the total system
resistance, with piles contributing approximately 78%. Furthermore, the results produce
general correlations between cyclic and dynamic effects on degradation of the backfill
provided by the testing and soil characteristics obtained, including target (static)
displacement, dynamic displacement amplitude, stiffness, and damping. The dynamic
displacement amplitudes during the eccentric mass shaker tests typically ranged between
4 and 2 mm for frequencies between 5 and 9.5 Hz representing behavior under reloading
conditions rather than virgin loading conditions. Generally, the presence of the loose silty
sand backfill nearly doubled the dynamic stiffness of the pile cap. The stiffness of the
backfill and pile cap combined was typically between 100 and 200 kN/mm for
frequencies between 4 and 8 Hz, while the stiffness for the backfill alone was typically a
decreasing trend between 100 and 40 kN/mm for the same frequency range. The overall
isolated loose silty sand damping ratio shows a general increasing trend with values from

32% to 55% for frequencies 3 and 8 Hz.
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CHAPTER 1-STATEMENT OF RESEARCH

1.1 INTRODUCTION

Building and bridge foundations often experience lateral load conditions in zones
of high seismic or wind activity. Passive earth forces and pressures provided by
surrounding soil are often neglected in design. However, the surrounding soil have been
proven to provide foundation systems with a large amount of lateral resistance capacity
(Duncan and Mokwa, 2001; Cole and Rollins, 2006). Passive earth pressures under static
loading conditions can be calculated by using Rankine, Coulomb, or log-spiral methods,
although recent research suggests that the log-spiral method may be the most accurate
(Duncan and Mokwa, 2001; Rollins and Sparks, 2002). Although the developments of
load-displacement relationships have not reached a conclusive widely accepted
methodology various methods have been developed such as those employed by
CALTRANS (2004), based on Maroney (1995) which assumes a simple linear elastic
relationship when estimating the passive earth pressure. Another method is that proposed
by Duncan and Mokwa (2001) which uses a hyperbolic relationship for passive earth
pressure as a function of deflection.

Numerous methods accounting for static load analysis of passive earth pressure

exist; however, very little has been done to address earthquake loading. Earthquake
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loading includes cyclic and dynamic effects. Cyclic loading tend to decrease soil strength
and stiffness, whereas dynamic loadings is believed to increase soil strength and stiffness
due to material and radiation damping. Brigham Young University, in collaboration with
the Network for Earthquake Engineering Simulation (NEES) and Utah Department of
Transportation (UDOT), has proposed the development of load-displacement curves for
typical soils used as backfill in pile cap and abutment applications to account for dynamic
and cyclic effects and observe soil behavior. In addition, dynamic displacement

amplitude, stiffness and damping will also be observed and investigated.

1.2 SCOPE OF RESEARCH

Typical soils used in the proposed investigation were silty sand compacted to a
dense state, silty sand compacted to a loose state, and two gravel backfill section
compacted to a dense state. A pile cap test (with no backfill) was also conducted to aid in
isolation of the backfill response. The backfill of concern for this thesis will be the silty
sand compacted to a loose state.

The data obtained from the loose silty sand and pile (baseline) tests will be used
first to quantify the overall contribution of passive earth resistance to the total system
resistance in static testing using load-deflection curves. Also, the degradation of the
passive earth resistance under cyclic, dynamic loading will be measured and reported.
This will aid in summarizing what portion of passive earth degradation is due to
relaxation of the soil and subsurface system and what portion is due to cyclic, dynamic
effects. Measured ultimate horizontal passive force, Py, and load-deflection curves will

also be compared to commonly practiced methods of estimating passive force.
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To better observe and investigate soil behavior during cyclic, dynamic loading the
dynamic displacement amplitude, stiffness, and damping will be plotted versus
frequency. This will allow for observation of soil behavior to lead to conclusion about
whether or not loose silty sand exhibits increases in stiffness and damping with an

increase in forcing frequency.
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CHAPTER 2-LITERATURE REVIEW

2.1 INTRODUCTION

Pile caps are generally designed to aid piles in distributing and resisting vertical
loads, lateral loads, and overturning moments as a group, instead of individually. The pile
cap system provides multiple modes of resistance which includes “pile-soil-pile
interaction, base and side friction along the concrete-soil interface, the rotational restraint
provided by the pile to pile cap connection, and passive earth resistance” (Rollins and
Cole 2005). Very little research has been done to assess the contribution of passive earth
resistance; although various areas of pile cap lateral resistance have been explored. The
type of tests conducted in this research range from the use of model testing to full scale

testing.

2.2 RELATED RESEARCH

The following contains literature reviewed pertaining and related to pile cap

lateral resistance due to passive earth pressure.
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Cole and Rollins (2006)

Cole and Rollins (2006) performed cyclic lateral load tests on full-scale 4 x 3 pile
group attached to a concrete pile cap 1.12 m in height by 3.05 m in length by 5.18 m in
width. These tests included two tests without any backfill around the pile cap, four tests
with different soil types backfilled around the pile cap, and one test with a trench
excavated between the pile cap and backfill (Rollins and Cole 2005). The first two tests
isolated the passive resistance contributed by the piles without backfill. The following
four tests used backfill consisting of clean sand, silty sand, fine gravel, and coarse gravel.
The load-deflection curves without backfill were then subtracted from the various
backfill load-deflection curves to obtain the passive resistance attributed by the backfill

as shown in Figure 2.1.

3000 | T T T T T T T T T | T T T T T T T T T T T T T T T T T T
1 Ist cycle continuous ]
2500 H- Passive force -
| — — — — Linear pile cap resistance ]
_ 2000 S
E - Clean sand results i
‘_é’ - (1st f:ycle of the 25 mm Difference is ]
& 1500 - loading sequence) “x passive force o
ER: -~y
1000 |- e .
500 [ -

O B | | | |

0 10 20 30

Horizontal deflection at load point (mm)

Figure 2.1: Load-deflection plot showing how the passive force was calculated
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Rollins and Cole (2006) concluded that the log spiral method in general predicts
well the observed failure surface geometry and also was typically within 15% of the
measured value (Cole and Rollins 2006). Overall, the pile cap lateral passive resistance
contributed between 33% and 47% of the total lateral resistance. To account for cyclic
loading conditions, where backfill soil stiffness degenerates and a gap forms between the
backfill and pile cap, a cyclic hyperbolic model was developed. Figure 2.2 shows the
relationships between reloaded soil stiffness, Kr, as a function of apparent soil

movement, A, and A,, as related to previous maximum deflection that were established.

P (units of force)

A (units of length)

Description of terms

A, — Previous deflection (units of length)

P, — Previous passive resistance (units of force)

Kinax - Initial soil stiffness of the load-deflection curve (units of force/length)
K; - Reloaded soil stiffness (units of force/length)

A - Apparent soil movement (units of length)
Aip; - Deflection intercept of K, and hyperbolic relationship (units of length)
Py — Passive load intercept of K, and hyperbolic relationship (units of force)

Figure 2.2: Proposed cyclic hyperbolic model
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Comparing measured results with estimated load-deflection curves using the
cyclic hyperbolic model provided varying results but was reasonably successful in
modeling the measured passive force-deflection behavior, despite its simplicity (Cole and

Rollins 2006).

Duncan and Mokwa (2001)

Duncan and Mokwa (2001) conducted two full-scale tests on a 1.1 meter height,
1.9 meter length, and .9 meter width anchor block. The block was loaded by a ram, using
a 2 x 2 pile group as a reaction. The load was applied incrementally over approximately a
90 minute interval. The first test was performed in indigenous soils; namely, hard
partially saturated sandy clay and sandy silt. After the first test, the natural soil in front of
the anchor block was excavated to a depth equal to the block height and 2.3 meters away
from the block. The second test was then performed on crushed run gravel backfill.

Their study considered four elements “(1) movement of structure; (2) strength and
stiffness of the soil; (3) adhesion between the structure and soil; and (4) shape of the
structure” (Duncan and Mokwa 2001). Duncan and Mokwa acknowledged various
methods common in estimating passive earth pressures. They concluded that the test data
was best estimated by the Log Spiral Theory with the Ovesen-Brinch Hansen correction.
In Figure 2.3, load-deflection curve ranges are computed and measured values fall within
provided ranges. The natural soil is shown to have considerably more load resistive

strength than that of the gravel backfill.
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Figure 2.3: Computed and measured load-deflection curves for passive pressure load tests

Gadre and Dobry (1998)

Gadre and Dobry (1998) simulated a foundation in lateral cyclic loading with

dimension .84 meter height, 1.14 meter length, and 1.14 meter width using a 28 mm x 38

mm X 38 mm rigid aluminum block. The centrifuge test element was placed in a

confining box containing dry Nevada No. 120 at 75% relative density to replicate in-situ

conditions. Seven centrifuge tests were conducted (see Table 2.1) to isolate base and side

shears, as well as passive and active forces. Three-dimensional static nonlinear finite-

element analyses were also performed to predict the measured test data.
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Table 2.1: Centrifuge test performed on model of embedded foundation

Panial Contribution Vertical | Measured
load ultimate
Fassiva/ | at the lateral
Base | Sidewall | active base tapacity
Test shear shear lorce {kNj (KN} Remarks
(1) {2] (3) ) {5) (6] {7)
B Tes No Ne 33 e p o~ 082
BL Yea Mo MNo 108 88 =~ 0482
L} No Yes Ne 33 38 -_—
P Nao No Yes 53 124 K, ~11.1
SP Noe Yes Yes 53 165 —_
BSP Yes Yes Yes %3 214 —
BSFL Yes Yes Yes 108 245 —

Nole: B = Hase shear, S = Sidewall shear, P = Passivefactive force, L

= vertical L.on? at the base, and combinations thereof,

They found that, “clear yielding occurs in all tests at a yield displacement of ~2.4

+ 1 cm, and ultimate lateral capacity is typically reached shortly afterward at a

displacement somewhere between 3.5 and 5 cm” (Gadre and Dobry 1998). As shown in

the load-displacement hysteresis graph (see Figure 2.4), the ultimate lateral load

associated with the before mentioned ultimate lateral capacity of the footing was 214 kN.

kLY

Lateral Load {kN}

Latersl Cris placement (om}

13

Figure 2.4: Measured load-deflection response for Test BSP

10
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In addition, they found that the passive earth resistance contributed >50% of the
total stiffness “at all displacement amplitudes” (Gadre and Dobry 1998). Damping
experienced by the test element was developed in the soil and the soil-foundation
interfaces. Gadre and Dobry used ., ratios to estimate and compare damping
characteristic in each of the seven tests (Table 2.2). The passive resistance was also found
to be a “dominant contributor to the damping of the foundation” (Gadre and Dobry

1998).

Table 2.2: Measured material damping for loops of increasing displacement amplitude

Loop [u (em)]
Test 1[0.3]|2[0.7]|3[1.4]|4[2.8]| 5[5.6] | 6[10.9]
(1) (@) (3) (4) (5) (6) (7)
B
Area (kN/cm) | 3.6 132 | so1 | 1815 | 5576 1,463.6
Bu 012 | 014 | 018 | o024 0.36 0.47
BL
Area (kN/cm)| 38 | 231 916 | 3344 | 10069 | 27478
o1 | 013 | 017| o023 0.32 0.45
3
Area (kN/em)| 40 | 215 | 652 | 1606 | 4201 | 10329
Bu 032 | 037 | 037| 037 0.39 0.39
P
Area (kN/cm)| 149 | 447 | 1355 | 5002 | 1,571.6 | 3.981.5
R 031 | 029 | 029| o032 041 0.47
SP
Area (kN/cm) | 187 | 694 | 2024 | 6449 | 18256 | 50432
B 032 | 033 | 033| o03s 0.38 0.44
BSP
Area (kN/cm) | 2).1 | 838 | 2675 | 8258 | 23242 | 68806
Bu 028 | 030 | 030| o031 037 0.47
BSPL
Area (kNcm) | 215 | 919 | 3000 | 9621 [ 32442 | 80275
B 024 | 024 | o025| o029 0.38 0.48

Goel and Chopra (1997)
Goel and Chopra (1997) performed analysis on actual earthquake data collected

from the instrumented US 101/Painter Street Overpass in Rio Dell, California. Using two
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of the nine sets of collected motion data, a structural idealization was created and
dynamic equilibrium equations applied to produce abutment forces. These forces were
plotted against the computed deformation to obtain the force-deformation hysteresis
loops. The loops were then isolated to determine abutment-soil system stiffness and
capacity.

The analysis revealed that abutment stiffness was high in the early stages of the
earthquakes characterized by small deformations. However, as deformation increased,
stiffness decreased during high levels of shaking. As deformations subsided, abutment
stiffness was gradually regained only in part and over time. Analysis further found that
CALTRANS design values for the abutment capacity in the normal direction were twice
that of the actual values. This inconsistency was caused by an assumption of 7.7 ksf (at
the time of this study) for soil passive earth pressure. Presently, that design value is at 5.0
ksf (Caltrans, 2004). This discontinuity is due to the overestimation of passive soil
resistance in the normal direction. However, design values for loading in the transverse

direction compared well with the actual data obtained in the analysis.

Mokwa and Duncan (2001)

Mokwa and Duncan (2001) performed thirty-one full-scale static lateral load tests.
The test group consisted of three groups of four HP 10 x 42 piles, a buried concrete wall
with no piles, and two single HP 10 x 42 piles. The pile cap dimensions were 1.5 m x 1.5
m. Load-deflection response data was taken in natural soil conditions with and without
pile cap embedment, gravel and other common backfill conditions, and no soil

conditions.
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In natural conditions, pile cap resistance produced small deflections of <2.5 mm
(see Figure 2.5). However, removing the soil from sides and front of cap to isolate pile
lateral resisting strength produced large deflections in comparison. Gravel backfill

conditions resulted in ~4 mm deflections.
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Figure 2.5: Load-deflection responses with and without pile-cap embedment in natural soil (left), and
comparison between natural soil and compacted gravel backfill (right)

Compacted and loose sand conditions were also included in these tests. Various
sand conditions were modeled, tested and their performance compared with the typical
gravel backfill as well as natural soil conditions (see Figure 2.6). Overall, Mokwa and

Duncan (2001) found that when natural gravel and sand backfills are used to resist lateral
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loading, they provided ~50% of the overall lateral resistance. Furthermore, they
concluded that the passive resistance developed in the front of the pile cap is proportional
to the strength and stiffness of the soil around the cap. Also, deflections can be

minimized by increasing the depth or thickness of the cap.
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Figure 2.6: Effect of backfill type and density on load-deflection response

Price and Eberhard (2005)

Price and Eberhard (2005) identified the importance of four phenomena that are
typically neglected in seismic analysis and modeling that contribute to the complex
interaction between bridges and embankments. These phenomena are three-dimensional

embankment response, nonlinear soil behavior, soil-structure interaction, and
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embankment scattering. By conducting parametric studies which compared measured and

computed values for abutment acceleration response histories, response spectra, structural

periods, damping ratios, and abutment stiffness, they were able to conclude that

considering three-dimensional embankment effects and specification of soil properties is

important.

Determéing initial effective
embankment thickness.

v

Evaluale properties of idealized
sSUperstruciure.

i

Assemble finite elemant mode! of
ambankment and EI.JPEIFEI‘I'LII:*UI“E.

v

Adjust embankment support excitation|
to account for embankment scattering

T

Compute embankment stiffness
and adjust
effective ambankment thicknass,

+

Update equivalent linear soil
properties.

Compute modeal responsa.

Final strains =

Initiel shrains?

Compute abuiment acceleration,
bridge periad, and damping ratic.

Figure 2.7: Flow chart of structure-embankment modeling procedure
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To model these phenomena, an iterative process was used and is shown in Figure
2.7. Key aspects of the model include “(1) a procedure to account for three-dimensional
effects using a strain-dependent variable thickness; (2) implementation of an equivalent
linear soil material model to account for nonlinear soil behavior; (3) calibration of two
equivalent single-degree-of-freedom systems accounting for soil-structure interaction in
the horizontal and vertical directions; (4) and modeling of embankment scattering with a
Green’s function model of half-space compliance” (Price and Eberhard 2005).

The first aspect of the model uses strain-dependent variable thickness to account
for three-dimensional effects. Beginning with equation 2.1, an initial effective
embankment thickness, By is found. Following along the model flow chart (Figure 2.7), if
the model must iterate, B must be recalculated using equation 2.2 which is dependant

upon the embankment stiffness K.

B, = (2.00 +0.53H)() 018 @.1)
w

B£:£+ln(1+as) 1o ! (2.2)

K a K
0 0 s J+a, —1
K X

0

The second aspect of the model is the implementation of an equivalent linear soil
material model to account for soil behavior. Figure 2.8 shows the proposed linear model

and the effects of soil-structure interaction are included in the model. Building upon
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equations provided by Humar (1990), Price and Eberhard are able to find values for kg,
Meq, and &qq. The other key aspects will not be mentioned in this summary.

After the model was created, the results were compared to recorded data and case
studies from the Painter Street Overcrossing (PSO) located in Rio Dell, California which
experienced six particular earthquakes. Figure 2.9 represents the comparisons of some of

the computed and measured earthquakes and their respective response spectra.
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Figure 2.8: Schematic view of model of structure-embankment interaction

Price and Eberhard (2005) summarized five conclusions that are listed here. First,
accuracy of computed seismic demand for a range of earthquakes was significantly
improved by the use of a varying thickness plane-strain model. Second, increases of 130

64% were observed for the effective fundamental transverse periods of the equivalent
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linear model, “leading to significantly altered abutment response spectra”. Third,
abutment response was “significantly decreased” when soil-structure interaction is
considered. However, this computed response was not sensitive to small variations in soil
parameters. Fourth, embankment scattering was negligible for “most intense ground
motion” and “significant” for moderate ground shaking. Finally, the shear-wave velocity

and modulus reduction for the embankment soils must be accurately modeled.
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0.5 o 80 ] 0.5 1.0
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Figure 2.9: Response spectra for computed and recorded motions at PSO

18

www.manharaa.com




Rollins and Sparks (2002)

Rollins and Sparks (2002) conducted a static lateral load test on a full-scale 3 x 3
driven pile group with “fixed-head” end constraints. The lateral force resisting
components included: pile-soil-pile interaction, passive pressure on the backside of the
pile cap, and base friction on the pile cap. Side friction was not considered in this test.
The backfill consisted of sandy gravel, compacted to ASTM standard D1157. Load,
displacement, and strain monitoring instrumentation were applied and data collected.

Lateral load test results were plotted against deflection as shown in Figure 2.10.
Loading was applied in incremental, static setting, which allowed for a well defined
curve and a maximum loading of 2750 kN. Small differential deflections were observed

between front, middle, and back row piles.
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Figure 2.10: Applied load versus pile cap displacement at load point
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Base Interface friction resistance was based on simple calculations and on
normalized skin friction mobilization curves developed by Rollins et al. (1997). Full base
friction capacity was reached with a deflection of 12.7 mm. Pile-soil-pile interaction was
analyzed using p-multipliers, Py.. This concept treats each pile in a pile group as a single
pile and multiplies the stiffness of the soil by a reduction factor Py. Passive earth
pressures and forces were computed using log-spiral, Coulomb, Rankine, Caltrans, and
Group methods. The log-spiral method provided the best comparison with measured
resistance values which compares well to the findings of Duncan and Mokwa (2001). A

summary of data is included in Figure 2.11.
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Figure 2.11: (Left) Computed load-deflection curves for base friction, passive pressure resistance,
pile-soil-pile interaction resistance, and total computed load with gap formation. (Right) Comparison
of measured load displacement curve with curves computed using five different methods for
computing ultimate passive resistance on pile cap

Rollins and Sparks (2002) concluded that at low displacements (=25 mm) the total
resistance consists of 13% base friction, 46% pile-soil-pile interaction, and 41% passive
resistance. At higher displacements (=70 mm), the total resistance is made up of 7% base

friction, 57% pile-soil-pile interaction, and 36% passive resistance. Overall, it was found

20

www.manaraa.com



that a movement of 6% of the pile cap height was needed to mobilize full passive

resistance in the dense compacted sandy gravel.

2.3 STATE OF PRACTICE

Currently, there are four methods widely accepted for computing ultimate passive

earth pressure, namely, Caltrans (2004), AASHTO (2004), Duncan and Mokwa (2001),

and Shamsabadi (2006).

AASHTO (2004)

Referencing the work of Clough and Duncan 1991, AASHTO calculates

approximate values of relative movement required to reach active or passive earth

pressure conditions (see Table 2.3).

Table 2.3: Approximate movement required to reach minimum active and maximum passive earth

pressure conditions.

Value of A/H

Type of Backfill Active | Passive

Dense sand 0.001 0.01
Medium-dense sand 0.002 0.02
Loose sand 0.004 0.04
Compacted silt 0.002 0.02
Compacted lean clay 0.01° 0.05°
Compacted fat clay 0.01° 0.05°

decrease with time.

#A= movement of top of wall required to reach minimum active or maximum
Eassive pressure, by tilting or lateral translation. H= height of wall

Under stress conditions close to the minimum active or maximum passive
earth pressures, cohesive soils creep continually. The movements shown
would produce active or passive pressures only temporarily. With time, the
movements will continue if pressures remain constant. If movement remains
constant, active pressures will increase with time and passive pressures will
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However, this method does not account for the path that the soil takes from zero
to the ultimate active or passive earth pressures. Most engineers assume that it is linear,
others that it is hyperbolic. Furthermore, it is still uncertain if these assumptions break
down under cyclic loading conditions. Questions about whether cyclic loads will follow
the same loading path cannot yet be answered. Dynamic loading conditions and
associated damping effects are known to increase the passive earth pressure values but

much is unknown about how the load and unloading paths will be influenced

Caltrans (2004)

Acting on the recommendations of Maroney (1995), Caltrans adopted a Bi-Linear
Load deflection curve. This curve normalizes all walls to the response of the tested 5.5 ft
wall used by Maroney. Using the following two equations (see Equations 2.1 and 2.2),

Caltrans produces a force deflection curve.

H
P, =(5.0ksf)* * 2.1
e = ( ) (5.5 ft) Avai 2.1)
Koo = (20 Kip/in) *( H ) *width (2.2)
o 5.5 ft

This method neglects soil type, density, and strength properties. These neglected
characteristics are essential to calculate spectral displacements or spectral acceleration, Sy

and S, respectively.
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If soil type is assumed to be soft but conditions are stiffer than expected the Sy

will be unconservative in calculating the force produced, as expressed in Equation 2.3.

2

F :m*(%)*sd (2.3)

Duncan and Mokwa (2001)

As previously mentioned in the literature review, Duncan and Mokwa did
account for crucial aspects of passive earth pressure by including strength and stiffness of
the soil and friction or adhesion between the structure and soil to name a few. The
calculation of Py is dependant upon some of these soil characteristics and is placed in a

general hyperbolic relationship equation as seen below.

(2.4)

The initial stiffness Kyax calculations are based on estimated values for E
(Young’s Modulus) and v (Poisson’s ratio). Also, the failure ratio Ry are estimated by
experience. This gives the hyperbolic load-deflection curve presented in Figure 2.12.
Although the test data that was obtained compared well with the theoretical load-
deflection curve calculated using the methodology above, the loading was such that it did
not include cyclic and dynamic effects that may be experienced if the soil had

experienced an earthquake.
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P (Force units)

A Kmax = initial slope of load-deflection curve
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Figure 2.12: Hyperbolic load-deflection curve

Shamsabadi (2001)

Considering bridges under lateral earthquake loading, Shamsabadi (2001) makes
use of mobilized Logarithmic-Spiral failure surfaces coupled with modified Hyperbolic
soil stress-strain behavior (know as the LSH model) to estimate abutment nonlinear
force-displacement capacity as a function of wall displacement and soil backfill
properties. Using seven common soil parameters, namely €59, Ry, €, @i, Ci, Fin, and yj, a
common engineer will be able to build an LSH model that has been found in good
agreement with measured force-displacement capacities. Figure 2.13 best illustrates this
method using a flowchart. Please refer to Shamsabadi (2001) for appropriate information
regarding tables and equation referred to in this flowchart.

In step one, the user would estimate model parameters €s9, Ry, and & That is

strain at 50% of failure strength, failure ratio, and strain at failure respectively. These
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parameters define the hyperbolic curve that is characteristic of soils and its stress-strain

relationship as described by Duncan and Chang (1970).

:” Step 1. Estimate Model Parameters | M
i | ) g | ;
E Estimate &, from Estimate ¢ from lab tests, R; backfitted from E
: laboratory test, Eq. (9), Eq. (10) using R; laboratory test, !
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C END D

Figure 2.13: Flowchart of LSH procedures
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In step two, the user selects a strain level by choosing ;. This will determine
parameters ¢; and c; which are backfill parameters leading to estimating nonlinear
abutment-backfill capacity. This is where Shamsabadi begins to build upon the current
discussion. He considers the mobilized failure zone as vertical slices and estimates the
internal forces of each slice to estimate Fj, and y; in step three. Using Fj, and y; a force-

displacement curve can be created and checked through an iterative process.
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CHAPTER 3-SITE CHARACTERIZATION

3.1 INTRODUCTION

The research for this thesis was conducted at the Interstate 15 (I-15) National
Testbed site located in Salt Lake City, Utah at South Temple Street near 700 West
underneath Interstate 15. The site used for this study was also used previously for lateral
pile group interaction testing (Rollins and Cole 2005) and passive force-deflection testing
(Cole 2003). As part of these studies, a comprehensive geotechnical investigation was
conducted to characterize the subsurface soils at the testing site. A map of the site
showing the location of the test cap relative to previous geotechnical testing locations and

bridge foundations for the interstate is shown in Figure 3.1.

3.2 SURFACE CONDITIONS

The site is relatively vacant, located underneath Interstate-15. Several full-scale
pile and pile group tests have been performed in this area, both during and after the
reconstruction of I-15. The surface topography is relatively flat at an elevation of
approximately 1,289 meters. In the immediate vicinity of the test pile cap, the surface
soils were excavated prior to construction, creating an excavated ground surface 1.1 m on

average below the surrounding ground surface.

27

www.manaraa.com



Location of

I]jocta gon of / Reaction Cap
est Cap
\4 A |° ° O@ CPT-15 QVsT-2 SCPT-1 X
o 2> e}
CHT-14 @ ° 00
g A DH-1
50 ol
OldI-15 50309 CTI6 © HPMT2
bridge bent #4 VST-3
DH-2
")

Old I-15 Old I-15
bridge bent #5 bridge bent #6 New I-15
PMT-1 bridge bent #3 sCpT-2 [X

New I- 15
bridge bent #2

Legend
(© Borehole shear
D Cone penetrometer
T — & Drill hole
0 Sm 10m 20m -EE- Pressure meter
(Scale = 1:400) D Vane shear

X Seismic cone penetrometer

Figure 3.1: Site Map and geotechnical test locations (after Cole 2003)

3.3 SUBSURFACE CONDITIONS

The results of several geotechnical investigations conducted at the test site have
been complied and presented by Cole (2003). In-situ testing consisted of standard
penetration testing (SPT), cone penetration testing (CPT), pressuremeter testing (PMT),
vane shear testing (VST), bore hole shear testing (BST), shear wave velocity testing
(SCPT), nuclear density testing, and in-situ direct shear testing. The SPT test relies on
blow counts to ascertain approximate relative densities of soil strata. The CPT test

yielded various data such as cone tip resistance (q.), sleeve friction (f;), and pore water
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pressure (u). A number of CPT tests were conducted with agreeable results indicating that

subsurface conditions are generally consistent throughout the site. Laboratory results
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Figure 3.2: Idealized soil profile and strength properties
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consisted of obtaining index properties such as natural moisture content, fines content,
unit weights, Atterberg limits and soil classification. Consolidation and shear strength

testing has also been performed.
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The near-surface soils consist of clay, silt and sand deposited after the regressive
phase of Lake Bonneville. Most of these surficial deposits were deposited during the
Holocene to uppermost Pleistocene age, and during the last cycle of Lake Bonneville.
The surficial deposits are underlain by lacustrine clay and silt of late Pleistocene age
deposited by Lake Bonneville (Personius and Scott, 1992). In general, subsurface soils
consist of approximately 5 m of moderately to highly plastic clays interbedded with
medium dense silty sand layers, underlain by highly plastic, sensitive clays to a depth of
9.5 m. Deeper soils generally consist of alternating layers of silty sand and moderately
plastic clay. An idealized soil profile developed by Cole showing basic soil types and

shear strength parameters is shown in Figure 3.2.

3.4 LOOSE SILTY SAND BACKFILL PROPERTIES

A sieve test was conducted on a sample of the backfill soil and the grain-size
distribution curve is shown in Figure 3.3. The grain-size distribution curve shows
reasonable correlation with the curve for the same silty sand reported by Rollins and Cole
(2005) which is also shown in Figure 3.3. Rollins and Cole also performed a hydrometer
analysis to determine the percentage of silt and clay. According to their test, the silty sand
consisted of 2.4% gravel, 52.9% sand, 44.7% fines, 38.5% silt, and 6.2% clay. The C,
and C, values were determined to be 14.8 and 2.8. The sieve test conducted in this
research suggests that the silty sand had 5.6% gravel, 53.6% sand, and 40.8% fines. A
hydrometer test was not conducted to enable a better comparison in the silty and clay
region. However, with the general agreement noted above the silty sand backfill

classified as SM according to the Unified Soil Classification system (ASTM D 2487) and

30

www.manaraa.com



A-4 according to the AASHTO M-145 system. Rollins and Cole (2005) found the

optimum moisture content for silty sand tested at standard and modified proctor effort to

be 16.8 and 13.6 percent, respectively. Also, they determined the maximum dry density

to be 16.90 kN/m® (107.5 pef) and 17.75 kN/m® (112.9 pef) for standard and modified

Proctor effort, respectively
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Figure 3.3: Average grain size distribution for backfill soil

The target unit weight for the backfill was 85-90 percent of the standard Proctor

which corresponds to a density range of 14.37 kN/m® (91.46 pcf) to 15.21 kN/m® (96.84

pcf). A nuclear moisture-density gauge was used to test each 100 mm (4 in) -thick lift of

the compacted fill during placement. A histogram of the measured density is shown in

Figure 3.4. The average in-situ dry density from these tests was 15.69 kN/m® (99.9 pcf),
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which is 92.8 percent of the standard Proctor maximum unit weight. This is slightly
above the desired range.

Prof. James Bay, of Utah State University, performed SASW testing at the site
after the backfill had been compacted into place. These tests indicated that the Rayleigh

wave velocity for loose silty sand was 85.34 m/sec (280 ft/sec).
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Figure 3.4: Histogram of unit weight testing of loose silty sand

Two in-place direct shear tests were conducted on site using a 0.46 m x 0.46 m x
0.23 m steel box into which a block of soil was trimmed. The first in-place direct shear
test (Figure 3.5) produced cohesion (c¢) and friction angle (¢) values of 6.8 kPa and 28,
respectively. The second test (Figure 3.6) produced cohesion (c) and friction angle (¢)

values of 2.3 kPa and 29, respectively.
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Figure 3.6: Second in-place direct shear test max shear stress versus normal stress
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Lab direct shear testing was also conducted on the silty soil at density and
moisture conditions corresponding to the field conditions. The samples were tested at the
in-place moisture content in the lab at a density of 15.75 kN/m’ (100.2 pcf) under drained
conditions. The normal stresses used in the lab testing were higher than in-situ conditions
due to the lower limit of the direct shear machine causing a constraint. Typical graphs of
shear stress versus horizontal deflection, as well as shear stress versus normal stress are
presented in Figure 3.7 and Figure 3.8. Values for cohesion (c) and friction angles (¢)
were found to be 13.5 kPa (230.5 psf) and 27 degrees, respectively based on the tests

conducted at the three lowest confining pressures.
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Figure 3.7: Shear stress versus deflection of loose silty sand

Two additional direct shear tests were conducted. A 40-60 silica sand in dry
conditions was tested by itself to get general soil characteristic of the sand. After which, a
portion of the tactile sensor and a concrete stone was placed in the machine to model and

quantify interface characteristics. Normal stresses used for testing were 23.94, 47.88, and
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Figure 3.9: 40-60 silica sand shear stress versus deflection curves
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Figure 3.10: Sand-on-sensor shear stress versus deflection curves
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95.76 kPa (500, 1000, and 2000 1b/ft?). The sand-on-sand samples were tested in the lab
and values for cohesion (c) and friction angle (¢) were found to be 17.6 kPa (366.7 psf)
and 36.3, respectively. The sand-on-tactile sensor was also tested at previously mentioned
normal streses and the values for cohesion (c) and friction angle (¢) were found to be 4.2
kPa (88 psf) and 31.5, respectively. Typical graphs of shear stress versus horizontal
deflection, as well as the combined (sand-on-sand and sand-on-sensor) shear stress versus

normal stress presented in Figure 3.9, Figure 3.10, and Figure 3.11.

37

www.manharaa.com




www.manharaa.com

Ol LEN ZI‘JI_‘I;ISI )



CHAPTER 4-TEST SETUP AND METHODOLOGY

4.1 INTRODUCTION

The full scale field testing described in this study involved static, cyclic, and
dynamic lateral loading of a pile cap with and without backfill. As before mentioned, this
site was used by Rollins and Cole (2006) and Cole (2003) of Brigham Young University.
They had conducted a series of full scale tests to determine the ultimate passive pressure
produced by various backfill soils and the development of this pressure with pile cap
deflection. Those tests only involved static and slowly applied cyclic loadings. In this
study, five full-scale lateral load tests were performed on the same pile cap with similar
soils, namely: silty sand (dense and loosely compacted), gravel densely compacted with a
3 ft. compacted gravel zone and 6 ft compacted gravel zone with the loosely placed silty
sand in the remainder of the backfilled area, and finally a no backfill case to isolate the
pile contributions to stiffness and damping and thereby isolating the backfill passive earth
resistance, stiffness, and damping characteristics. However, these tests were performed
dynamically or with rapidly applied cyclic loads. This makes it possible to evaluate the
dynamic stiffness and damping produced during dynamic loading. The load tests were
performed between the dates of August 15, 2005 and August 26, 2005. This report will

focus on the test results of the silty sand compacted loosely and the no backfill (baseline)
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case. This section will cover the equipment used and the test setup. This section will also
summarize the backfill soil characteristics of the soil under consideration (loose silty

sand) and testing procedures used throughout the tests.

4.1.1 GENERAL

Figure 4.1 shows the main elements of the load testing program, each of which is

discussed in more detail in the following text.

Compacted Backfill Sail

Pressure Sensors Shaker
/ ’/ Actuators

Feaction
Pile Cap

Test
Pile Cap

it

a3

Figure 4.1: Schematic showing main components used in the testing program

4.1.2 TEST PILE CAP DESCRIPTION

The pile cap used for this research is the same used by Rollins and Cole, but
retrofitted to accommodate two hydraulic actuators and an eccentric mass shaker. The
cap is 1.12 m (3.67 ft) high with a width of 5.18 m (17 ft) and a depth of 3.05 m (10 ft).
The pile cap connects 12 steel pipes installed in a 4 x 3 configuration. The piles are 324

mm (12.76 in) outside diameter, 9.5 mm thick wall, and spaced center-to-center at 4.4
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and 3.3 pile-diameters in the long and short dimensions, respectively. The steel pipe piles
are ASTM A252, Grade 3 (i.e., 310 MPa minimum yield strength); however,
manufacturer mill certifications for 192 specimens of this type of pipe pile had average
yield strength of 404.6 MPa based on a 0.2% offset criteria. The piles extend to a depth of
approximately 12.2 m (40.03 ft) and are filled with concrete. The steel pile sections are
embedded approximately 75 mm into the concrete cap. There is also a circular
reinforcing cage consisting of six #25 vertical bars and a #13 spiral at a 305 mm pitch

which extends approximately 1.7 m into each pile and 1.06 m into the cap.

4.1.3 REACTION PILE CAP DESCRIPTION

Adjacent to the test pile cap is a reaction pile cap constructed approximately 3.84
m north of the existing test pile cap. The existing piles shown to the north of the test cap
in Figure 3.1 had to be extracted and reinstalled somewhat to the north using a vibratory
hammer so that they would be where needed for the reaction cap. The reaction pile cap is
1.12 m tall and 5.19 x 5.33 m in plan view (with the short direction corresponding to the
north and south faces, matching the test cap). The cap connects nine steel pipe piles
installed in a 3 x 3 configuration with 3 pile-diameter center-to-center spacing. The steel
pipe piles have a diameter of 610 mm (24.02 in) with a wall thickness of 12.7 mm (same
grade as the test piles), and a depth of approximately 12.2 m (40.03 ft) with the
uppermost 2.7 m containing reinforced concrete and the remainder filled with soil. The
steel pile sections are embedded approximately 75 mm into the concrete cap. There is
also a circular reinforcing cage consisting of eight #32 vertical bars and a #13 spiral at a

152 mm pitch which extends approximately 2.74 m into each pile and 1.0 m into the cap.
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4.1.4 HYDRAULIC ACTUATORS

The test pile cap and reaction cap were connected by two hydraulic load actuators
installed in parallel. Each actuator (manufactured by MTS Corporation) has a load
capacity of 2.7 and 2.0 MN in compression and tension, respectively, and has a stroke of
+508 mm and a maximum travel velocity of approximately 100 mm/sec while
maintaining a constant rate of loading or displacement during the test period. The ends of
the actuators are equipped with swiveling heads, creating a moment-free pinned
connection. The two actuators were connected at mid-height of the test pile cap and
reaction pile cap with four high-strength, threaded steel rods, installed in sleeves which
extended the full length of the pile caps. The actuators were used to slowly push the test
pile cap to predetermined displacement levels. The actuators were unable (and not
intended) to apply a rapid cyclic loading due to the high levels of load required to initially

displace the pile cap.

4.1.5 ECCENTRIC MASS SHAKER

The George E. Brown, Jr. Network for Earthquake Engineering Simulation
(NEES) provided an eccentric mass shaker from the University of California Los Angeles
equipment site. The shaker (model MK-15 manufactured by ANCO Engineers) was
mounted on top of the existing pile cap and anchored with chemically bonded steel
anchors embedded in the pile cap. The eccentric mass shaker was used to create a cyclic,
dynamic loading superimposed on the static loading provided by the actuators. The

shaker has uni-directional force and frequency capacities of 445 kN and 25 Hz (but not at

42

www.manaraa.com



the same time). Due to safety concerns (potential loosening of the anchors), the shaker
was operated during testing at levels not exceeding approximately 356 kN.

The force-frequency relationship for the shaker is controlled by the eccentricity
provided by the configuration of its four baskets and their internal brick payloads. The

equation relating force and frequency is given by Equation 4.1:

Force = u*0.102 * (WR) * /1000 (4.1)

where force is expressed in kips, u is the loop amplitude in inches, and ® is frequency in
hertz, and WR is the total eccentricity of the weight and basket per basket in 1b-in.
During testing of the loose silty, only one basket configuration was used and the WR
value was equal to 6127 Ib-in (692.2 kN-mm). During the no-backfill (baseline) testing,
two different basket configurations were used in an attempt to bracket the changing
fundamental frequency. (Due to logistical constraints it was not possible to fully bracket
the changing fundamental frequency of the pile-cap system with the loose silty sand
backfill). The first configuration involved two partially loaded baskets with a WR value
of 6127 Ib-in (692.2 kN-mm) each, resulting in maximum safe operating frequency of 8
Hz. This configuration was used for the first four static displacement levels. At higher
displacement levels, a second configuration involving two partially loaded baskets with
an eccentricity of 3984 Ib-in (450.1 kN-mm) each was used, resulting in maximum safe

operating frequency of 10 Hz.
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4.1.6 INSTRUMENTATION

Load and displacement were measured throughout the tests. Eight linear variable
differential transducers (LVDT) were used to directly measure the displacement of the
pile cap and reaction foundation as the actuator applied load. Accelerometers were
mounted on the pile cap to compute relative displacement of the pile cap as it was
shaken.

Load was measured directly by strain-gauge load cells built into the actuators.
Pressure at the soil cap-interface was measured using four earth pressure cells and two
thin-film tactile pressure sensors manufactured by Tekscan, Inc. The earth pressure cells
were mounted flush on the side of the pile cap. This was accomplished by chiseling about
292 mm diameter circles in the pile cap, and then resurfacing the roughened surface with
cement grout. A water seal was then applied to the cement grout. A vertical groove was
cut from the pressure cell to the top of the cap to accommodate the handles and wiring of
the pressure cells. To further protect the pressure cells a small steel pipe was cut in half
lengthwise and placed over the handles of the pressure cells. After this manner, the four
earth pressure cells were mounted flush with the face of the pile cap.

The tactile pressure sensors measured pressures on a grid of approximately 10.2
mm spacing over a 530 mm wide and 490 mm high area. The sensors were made of
polyester sheets embedded with semi-conductive material. Horizontal and vertical
sensing elements intersect at “sensels”. The change in the resistance over each sensel
determines the pressure acting on the sensor. Each tactile pressure sensor used in this
testing contained 2016 sensels. An electronic handle was attached to each tactile sensor

and was used to transfer data from the sensing pad to a laptop or computer for data
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acquisition using software provided by Tekscan called “I-scan”. The sensors were
equilibrated and calibrated in a lab before being used in the field using a pneumatic
bladder system. The equilibration and calibration should be conducted using material that
will be in contact with the tactile pressure sensor during field tests; however, experiments
were conducted with concrete surfaces and fine to medium grade sand. These
experiments found that equilibration and calibration could be reasonable accomplished

using the bladder system.

E Aug15_afterTest9_b

AL

Time 0.2 of 2.8 sec |0 |tuea 21488 iF [Force: 6387 I

Figure 4.2: Sample tekscan real time window

The tactile pressure sensors were evenly spaced vertically along the height of the
pile cap. To protect the lower tactile pressure sensor’s handle a square hole was cut into
the face of the pile cap, the handle was then attached to the tactile pressure sensors and
placed in the cut, and finally the cut was covered by a steel plate. Small holes were
punctured along the outer edges of the tactile pressure sensors to allow entrapped air to

45

www.manharaa.com




escape during backfilling. The data acquisition software allows the pressures to be
viewed along the sensor in real-time. A sample real-time window is shown in Figure 4.2.
The figure shows the reading from the tactile pressure sensors immediately after the
shaker run at 50 mm. Each small square in the figure represents a sensel on the tactile
pressure sensor. Due to the grey scale format of the figure some resolution in color was
lost.

The field data was recorded using the NEES mobile field station, and a laptop was
used to collect data from the tactile pressure sensors. The NEES mobile station recorded
data at 0.005 Hz, and the laptop recording the tactile pressure sensors recorded data at
0.01 Hz. Figure 4.4 shows the general setup of the instrumentation. Instrumentation

locations are summarized in Appendix A.
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Figure 4.5: Plan View of testing facility

48

www.manharaa.com



Figure 4.6: Test setup in front of test cap

Earth Pressure Cells
Tekscan Pressure Sensors

Figure 4.7: Instrumentation setup on front of pile cap before backfill
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The backfill was placed along the longer side of the pile cap and extended beyond
each side of the side of the pile cap to capture three-dimensional effects. Backfill
placement extended approximately 4.9 m (16 ft) behind the cap in order to ensure that the
resulting log-spiral failure surface occurred within the limits of the backfill. A grid was
painted on top of the backfill for crack mapping purposes. Figure 4.4 and Figure 4.5 show
drawings of the cap face and plan view of the site, respectively. Figure 4.3, Figure 4.6,
and Figure 4.7 show photos taken of the actuators, backfill area, and pile cap

instrumentation, respectively.

4.2 TESTING PROCEDURE

Following instrumentation setup the front face of the test pile cap was backfilled
with loose silty-sand material. Throughout the backfill operation, a total of six
accelerometers were placed in the backfill material at specified locations. Upon
completion of the backfill, data samples were taken from the Tekscan sensors to get an
initial at-rest passive pressure on the pile cap. Backfilling normally took a full day for
completion, and testing continued the following day.

The testing began with the shaker being ramped up from 1 Hz to about 8 Hz
without any load from the actuators. This beginning shaker test was considered the first
test. After the shaker run, the actuators pushed the cap to a target deflection of 6.35 mm
(0.25 1n), and then the shaker was ramped again to a frequency of about 8 Hz. This test
was considered test two. The actuators then pushed the cap to a target deflection of 12.7

mm (0.50 in). The sequence of an actuator push followed by a run of the shaker
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constituted a test. Each actuator push increased the pile cap deflection by about 6.35 mm

(0.25 in) referring to Table 4.1, the testing sequence is shown.

Table 4.1: Test History for August 18, 2005 for loose silty sand

Target Deflection Actual Maximum Frequency | Length of Test

Test (mm) Deflection (mm) (Hz) (min:sec)
1 0 0 8 712
2 6.35 6.34 8 6:31
3 12.7 12.65 8 6:21
4 19.05 19.03 8 6:17
5 25.4 25.31 8 6:29
6 31.75 31.57 8 6:56
7 38.1 37.90 8 6:30
8 44.45 44.21 8 6:43
Table 4.2: Test history for August 16, 2005 for baseline pile system testing

Target Deflection | Actual Deflection Maximum Length of Test

Test (mm) (mm) Frequency (Hz) (min:sec)
1 0 1.27 7.5 04.22
2 6.35 4.88 8 05:01
3 12.7 10.66 8 07:31
4 19.05 17.04 8 05:31
5 25.4 23.32 9.5 05:23
6 31.75 29.58 9.5 05:03
7 38.1 35.91 9.5 06:04
8 44.45 42.22 9.5 07:09
9 50.8 49.48 9.5 05:56

The baseline pile testing will be subtracted from the loose silty sand data to isolate
the passive earth resistance. For this reason, and for future reference a summary of the
testing performed for the baseline pile will be included here. The testing procedure for
the baseline case is the same. The only thing that changes is that the frequency range

tested started at 1 Hz to 10 Hz. However, some test varied in regards to frequency ranges

51

www.manaraa.com



tested and only the data falling into the range of 1 Hz to 9.5 Hz was included in the

processing of figures presented in chapters five and six (see Table 4.2).
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CHAPTER 5-STATIC RESPONSE OF LOOSE SILTY SAND

5.1 INTRODUCTION

This chapter will present and discuss the static response of the loose silty sand
backfill testing. System (pile cap plus backfill) load-deflection curves will be presented
and compared for three cases. The first case is the maximum load-deflection curve
defined by connecting the peak load and deflection points for each increment of loading.
The second case is the relaxation load-deflection curve obtained by connecting the load
and deflection points at each load increment immediately prior to cyclic loading. The
third case is the post-cyclic load-deflection curve which is defined by connecting the load
and deflection points at each load increment immediately after the completion of cyclic
loading. These three curves will be plotted and compared relative to the baseline load-
deflection curves provided by the pile cap without any backfill. Finally, the baseline
curves will be subtracted from each of the appropriate loose silty sand curves (maximum,
relaxation, and post-cyclic) to reflect the passive earth resistance contribution to each of

these load-deflection curves.
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5.2 LOAD-DEFLECTION CURVES

The loose silty sand test was recorded from start to finish and produced raw load-
deflection curves representing the system resistance response. The pile cap was also
tested without backfill to quantify the pile contribution and create a baseline load-
deflection curve. Passive soil resistance was isolated by subtracting the lateral resistance
contributed by the piles from the total system resistance. Using actuator load data versus
linear variable differential transducer (LVDT) data load-deflection curves were produced

and compared.

5.2.1 LOOSE SILTY SAND BACKFILL SYSTEM RESISTANCE

The data collected from the actuator and LVDT were plotted to produce load
deflection curves. Using the initial starting point of the record for that day allowed the
deflections to be zeroed and plotted as shown in Figure 5.1. The lateral load testing was
typically performed in an incremental fashion using the following procedure. First, the
two actuators pushed the pile cap to a specified deflection point then natural creep of the
soil occurred before cyclic testing with the shakers took place. After the cyclic loading
sequence produced by the shakers, which will be discussed in Chapter 6, additional
relaxation of the load occurred and the post-cyclic load-deflection point was defined.
The actuators were then used to increase the load to the next deflection increment and the
procedure was repeated until the next target deflection was achieved. Target deflections
were 6.35, 12.7, 19.05, 25.4, 31.75, 38.1, 44.45, and 50.8 mm. Prior to beginning the
entire testing series, a set of cyclic lateral load tests were performed with the eccentric

mass shaker.
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Figure 5.1: The load-displacement response of the pile cap with loose silty sand backfill

The actuator push, creep (relaxation point), and post-cycling point constitute the
static portion of the testing. The dynamic shaker testing that occurred between the
relaxation point and the post-cycling point will be considered later. Collecting the
maximum loads at the end of each push with its associated zeroed displacement produced
a maximum load-deflection curve as shown in Figure 5.2. The relaxation and post-
cycling load-deflection curves are also plotted in Figure 5.2. The relaxation load-
deflection curve refers to the collection of load-deflection points following creep in the
soil after the push to the target deflection was completed but just before the eccentric
shaker tests were begun. Although actuator deflection load was held constant, dissipation
of the soil response following the initial push is represented by the relaxation load-

deflection curve.
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Figure 5.2: System load-deflection curves

The load-deflection plots in Figure 5.2 include the loose silty sand passive
resistance and the pile/pile cap resistance, thus constituting the total system resistance.
The maximum load-deflection curve exhibits the greatest degree of non-linear behavior,
but the relaxation curve and the post-cycling load-deflection curves become progressively
more linear. In fact, for deflections greater than about 10 mm, all three curves appear to
exhibit very linear behavior. The percent degradation expressed by the difference of the
relaxation and maximum load normalized by the maximum load decreased range from
~20% at low deflection levels to ~8% at high deflection levels. This is approximately a
median load degradation of 124 kN. The percent degradation expressed by the difference

of the post-cycling and maximum load normalized by the maximum load decreased from
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~60% at low deflections to ~20% at high deflections. This is approximately a median

load degradation of 334 kN.

5.2.2 BASELINE PILE RESISTANCE

To enable the isolation of the passive resistance provided by the loose silty sand,
the pile cap resistance was obtained by shaking and pushing the pile cap with no backfill
in place. The same loading procedure was used for this test to facilitate comparisons.
Data from actuators and LVDTs were graphed and a load-deflection curve for the full test
is presented in Figure 5.3. The stiffness represented in the graph is approximately 27

kN/mm (155 kip/in).
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Figure 5.3: The load-displacement response of the pile cap with no backfil

To verify that the baseline load-deflection curve for the no backfill test remained

consistent throughout subsequent backfill testing, comparisons were made with the load![]
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deflection curves obtained when the pile cap was pulled-back to its initial position at the
end of each test day. Although the load-deflection curve during pull-back was not
recorded at the end of the loose silty sand testing, the pullback curves from tests before
and after this test suggest that the stiffness deduced from the other tests held constant
throughout the testing week. Because a gap formed between the pile cap and the backfill
soil during pull-back, the pull-back curves should indicate the lateral contribution due to
the pile cap only particularly at small displacements. Figure 5.4 shows load-deflection
curves during pull-backs recorded following the backfill tests involving dense silty sand
backfill and a 3 ft gravel backfill between the pile cap and the loose silty sand. Also
shown in the figure is the load-deflection curve produced by the actuator pushing the pile

cap during the test with no backfill.
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Figure 5.4: Pull backs and pile only push during testing
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The beginning of the pull-back curve is at a deflection 2 to 2.5 in. The beginning
of the pull-back curve is characterized by a steep concave upward shape to the load-
deflection relationship. The pull-back load-deflection curve gradually changes from a
curve into an approximately linear relationship. The curved portion of the load-deflection
curve during pull-back can be attributed to the passive resistance of the backfill which is
still in contact with the pile cap and is contributing to the overall passive resistance in this
region. As the slope of the load-deflection curve becomes linear, the pile cap loses
contact with the backfill soil and most of the lateral resistance is provided by the pile cap
only. As shown in Figure 5.4, the slope of the load-deflection curve with no backfill
during pushing is similar to the slope of the linear portion of the load-deflection
relationships during pull-backs further verifying the accuracy of the baseline slope for the
piles.

Reducing recorded data consistent with the method applied to the loose silty sand
data allowed for the maximum, relaxation, and post-cycling load-deflection curves also to
be extracted and produced as shown in Figure 5.5. A comparison between the maximum
load-deflection curve for the total system and the pile cap (baseline) static, maximum
resistance curve indicates that the pile cap accounts for ~78% of the total system
resistance over a wide range of deflections.

The load-deflection curves in Figure 5.5 quantify the contribution of the pile cap
to lateral resistance. The percent degradation expressed by the difference between the
relaxation and maximum load normalized by the maximum load ranged from about ~20%
at small deflection to ~7% at larger deflections. The loose silty sand backfill tests yielded

approximately the same percent degradations when comparing the relaxation and
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maximum load curves; however, with a larger median load degradation of 124 kN
compared to a median load degradation of 87 kN for the no backfill case. The percent
degradation expressed by the difference of the post-cycling and maximum load
normalized by the maximum load resulted in a range from about ~60% at small
deflection to ~15% at large deflection; also similar for the loose silty sand case. This is
approximately a median load degradation of 169 kN (334 kN for the loose silty sand
case). The median load degradation for the backfill case are larger than the no backfill
case because the total load in the system is higher due to the added resistance provided by

the loose silty sand backfill.
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Figure 5.5: Baseline (no backfill) load-deflection curves
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5.2.3 STATIC PASSIVE EARTH RESISTANCE

To isolate the static passive earth resistance, the pile cap (baseline) resistance is
subtracted from the loose silty sand system response. Identical deflection values between
the system resistance and pile resistance load-deflection curves are not typically achieved
and were not experienced in this testing. Thus using the deflection values of the system
resistance as a reference, an interpolation of the loads for the pile resistance was needed
to produce loads that would be subtracted from the system resistance response at a
common deflection. The maximum, static passive resistance curve accounts for ~22% of
the total system resistance at a given deflection (compare Figure 5.2 with Figure 5.6).

The percent degradation between the relaxation and maximum load was ~30% at
small deflection but decreased to ~15% at greater deflections; higher percent
degradations then those presented in the loose silty sand case and no backfill case. This is
approximately a median load degradation of 37 kN. The overall degradation of the
passive earth resistance due to relaxation is a median value of ~17%. The percent
degradation expressed by the difference of the post-cycling and maximum load
normalized by the maximum load a decreased from about ~90% at small deflections to
~50% at larger deflections; 30% and 35% percent higher, beginning of the range and
ending of the range respectively, than the range presented for the loose silty sand backfill
case and no backfill case. This is a median load degradation of approximately 180 kN.
The overall degradation of the passive earth resistance due to cyclic, dynamic loading is a
median value of ~53%. Relaxation of the passive earth resistance at the conclusion of

cycling load typically reduced the resistance to about 30% of its initial maximum value.
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The remaining capacity of the system is attributed to both residual strength in the backfill

soil and the pile resistance.
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Figure 5.6: Loose silty sand passive earth load-deflection curves

5.2.4 COMPARISON OF MEASURED & COMPUTED PASSIVE FORCE

The literature presented in chapter 2 discusses several methods used to calculate
the ultimate horizontal passive force, P, and produce force-deflection curves.
Commonly used methods include Rankine, Coulomb, Log-spiral, and Caltrans. These
methods were used to compute the ultimate horizontal passive force and compared to the

loose silty sand measured results. Table 5.1 summarizes the assumptions used to calculate
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the four previously enumerated methods. The parameters are in general agreement with
the measured properties with two exceptions. First, the cohesion in the backfill has been
neglected. If cohesion were to be included the computed Py would be much higher than
the measured value in all cases. This was also the parameter which was most uncertain
from the field and lab data. Secondly, the initial stiffness parameter (k) of 200 kips/f‘[2
was at the low end of the range of values for either natural or compacted soil suggested
by Duncan and Mokwa (2001). This low value was necessary to produce better
agreement with the measured curve and is likely due to the fact that the soil in this test

was in an very loose state.

Table 5.1: Summary of assumptions used to compute Py

cap width, b (ft) = 17.00
cap height, H (ft) = 3.67
embedment depth, z (ft) = 0.00
surharge, gs (psf) = 0.0
cohesion, c (psf) = 0.0
soil friction angle, ¢ (deg.) = 28.0
wall friction, d (deg.) = 20
initial soil modulus, E; (kip/ftz) = 200
poisson's ratio, v = 0.30
soil unit weight, Ym (pCf) = 110.0
adhesion factor, o= 1.00
Amax/H, (0.04 suggested) = 0.05

The Rankine method assumes a linear failure surface and neglects wall friction.
The Coulomb method also assumes a linear failure surface but accounts for wall friction.
The Log-spiral method uses a log-spiral shaped failure surface and includes the wall
friction in its calculations. All three implicitly assume that soil pressure increases with

depth. Caltrans uses a bi-linear model that only accounts for the height and the area of the
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all four cases.

Table 5.2: Measured and computed ultimate passive force comparison

soil-wall interface. The cohesion is neglected and does not add to the soil resistance for

Method Ultimate Horizontal Passive Force, Py, | Percent Error
Measured 347 kN -
Rankine 182 kN -47
Coulomb 337 kN -3
Log Spiral 312 kN -10
Caltrans 926 kN +166

Applying these assumptions to each method appropriately and converting the

results to SI units provided the comparisons found in Table 5.2. The Rankine method

under estimated the ultimate passive force by 47%, while the Caltrans method over

estimated the ultimate passive force by 166%. The Coulomb and Log-spiral methods

provided the best correlation with an under estimated ultimate passive force of 3% and

10% respectively.

In the literature review provided in chapter 2, Duncan and Mokwa (2001)

reported that the passive earth force was best estimated by applying the Log-spiral

method with the Ovesen-Brinch Hansen correction, well known as the Duncan and

Mokwa Hyperbolic method. This method, as well as the Caltrans method, is used to

compute load-deflection curves to compare with the maximum passive earth force curve

found in Figure 5.6 (see Figure 5.7).
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Figure 5.7: Measured and computed load-deflection curve comparison

The over estimation of the Caltrans method can be graphically seen in Figure 5.7.
However, the Duncan and Mokwa hyperbolic method provides a generally good estimate

in the region of highest deflection.
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CHAPTER 6-DYNAMIC RESPONSE OF BACKFILL

6.1 INTRODUCTION

To better understand the cyclic, dynamic response data presented in this chapter, a
section will be included which discusses the data processing procedures used to obtain
the cyclic, dynamic response information. This chapter will then present and discuss the
results from the cyclic, dynamic load testing involving the loose silty sand backfill.
System cyclic, dynamic load-deflection curves as a function of target displacement will
be shown. In addition, system cyclic, dynamic load-deflection curves are presented as a
function of forcing frequency. The cyclic, dynamic degradation relationship as a function
of frequency from 1 to 8 Hz will also be quantified. These same relationships will also be
presented separately for the baseline response under cyclic, dynamic loading. The
baseline curves will then be subtracted from the appropriate system curves to obtain the
cyclic, dynamic load-deflection curves for the passive resistance contribution. Based on
the appropriate dynamic load-deflection curves, stiffness and damping for the system,

baseline, and passive resistance will be presented and discussed.
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6.2 DATA PROCESSING PROCEDURES

A simplified graphical model of the physical test features was created and is

presented in Figure 6.1. The left direction is taken as positive directional notation also the

positive signal direction for the accelerations obtained from the accelerometer

instrumentation.

+ Direction Notation
+ a signal

ﬁ \

I, =ma

*+—— Fs=(-signal)

. .

(Sumplified Model)

A

X

Figure 6.1: System free body diagram with system forces represented

=(m)(+a Si_Q;llﬂl) \ \

N

As shown in Figure 6.1, Ryc is the reaction provided by the backfill soil and pile

cap with components of stiffness and damping. Rgc is the reaction provided by the pile of

the reaction cap having both stiffness and damping components. Fs is the shaker force

provided to the system with a negative signal in the left direction. I; and I, are the inertial

force for each mass, test cap and reaction cap respectively. When the shaker force

changes direction, then the acceleration of the pile cap is taken as a negative value and
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used in appropriate calculations of the inertial force. Including both pile caps in a free
body diagram yields two equilibrium equations, a static and dynamic equilibrium

equation (Equations 6.1 and 6.2 respectively).

-Ric +Rpe +E =0 (6.1)

-Ric +Ryc +F -1, -1, =0 (6.2)

If the system free body were cut into two free bodies, a left side and a right side,
at the dash line (through the actuator), then two additional equilibrium equations are
obtained (Equations 6.3 and 6.4 respectively). These equations allow the dynamic
response of the reaction cap to be excluded from the free-body of each pile cap because
the forces on the actuators are known. Solving Equation 6.4 for F,, and then substituting
it into Equation 6.3 and solving Equation 6.3 for Fs and substituting this into Equation 6.2
(the dynamic equilibrium equation) results in a balanced equation with all forces
canceling. With this confirmation, the left equilibrium equation (Equation 6.3) was used
to model the system to obtain dynamic displacement amplitude, average load, stiffness,

and damping values.

-Ric - I, +F, +F, =0 (6.3)

R, -F —1,=0 (6.4)

a

Solving Equation 6.3 for Rrc allows the load in the system (backfill + pile cap) or
baseline (no backfill) case to be isolated. To begin the data processing, an input file was
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prepared which included the load from the actuator, acceleration measurements acquired
from the accelerometer, double integrated displacements from the accelerometer (the
LVDTs became unreliable due to noise caused by vibration of the pile cap), and the loop
counter signal from the eccentric shaker. In addition, the time record and approximate
shaker frequency was included. Noise was experienced in the accelerometer data but was
reduced by filtering producing reasonable results.

Using the model discussed previously this data was processed by a spreadsheet
designed to calculate the shaker force, inertial force, dynamic displacement amplitude,
the maximum, minimum, and median values of the displacement, stiffness, damping, and
load. In the case of the load, the eccentric shaker force (calculated using Equation 4.1)
and the inertial force load was added/subtracted to/from the actuator load to determine

the reaction of the test cap, Ryc. The inertial force is calculated using:

I, =g*386.4 * mass (6.5)

where g is the measured accelerations and mass includes contributions from the weight of
the test pile cap (93.5 kips), the weight of an 8 ft length of the 12 test piles which are
assumed to be moving with the cap (17 kips), half the weight of the two actuators (8.8
kips), the weight of the eccentric shaker (5 kips), and the weight of the backfill within a
log-spiral shear zone (30 kips).

Resulting system force-displacement loops were used to solve for the dynamic
displacement amplitude, u (given by the difference between the maximum and minimum

displacements in a given hysteresis loop divided by two), the stiffness, k, (given by the
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difference between the maximum and minimum load in a given hysteresis loop divided
by two then divided by the dynamic displacement amplitude). The average peak-to-peak
slopes for the first 20 force-displacement loops during the dwell time at an increment of
0.5 Hz were used. Isolation of each cyclic effect was not exact due to the ramping nature
of the eccentric shaker, starting at 1 Hz to 8 Hz as mentioned before. Damping, {, was

calculated from the backfill force-displacement loops using the equation 6.5:

F=—"— (6.6)

where the area of the hysteresis loop is represented by A, and Es is the stored strain
energy which equals 0.5 ku,, in which case k is the slope of the loop (stiffness) and u, is

its displacement amplitude.

6.3 LOOSE SILTY SAND BACKFILL DYNAMIC SYSTEM RESPONSE

6.3.1 LOAD-DEFLECTION CURVES

The average load and displacement were extracted from the output file produced
by the data processing spreadsheet. The average was taken over twenty hysteresis loops.
Average load-deflection curves for the dynamic tests are presented in Figure 6.2 and 6.3
in terms of deflection and frequency, respectively. The static maximum, relaxation and
post-cycling load-deflection curves are also shown in these figures for comparison.

The dynamic system load-deflection curves correlate well with the previously
presented static loose silty sand curves. When the dynamic system response curves are
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Figure 6.2: Loose silty sand static and dynamic system load-deflection curves
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Figure 6.3: Loose silty sand static and dynamic system load-deflection curves (function of frequency)
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superimposed upon the static loose silty sand system response curves, the dynamic
response falls between the static relaxation and post-cycling curve as shown in Figure 6.2
and Figure 6.3. In Figure 6.2 a space is observed between the last point on the dynamic
system load-deflection plot and the superimposed static system post-cycling load-
deflection curve. This is caused by additional degradation in the system as the eccentric
shaker ramped down from its 8 Hz peak frequency but not included in these curves.
Observing the data used to create Figure 6.2 and Figure 6.3, the load appears to
increase as the forcing frequency increases from 1 to 3 Hz for each target deflection (tests
1 through 8). This increase is characteristic of the pile coming in contact with the backfill
and activating the passive earth resistance. However, the peak passive earth response is
reached and the backfill passive earth resistance then begins to degrade with the increase
in frequency for each test. This degradation that is observed is not constant and could also

be attributed to or a function of gapping effects or subsurface relaxation.
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Figure 6.4: Loose silty sand system load-deflection curves (function of frequency)

73

www.manaraa.com



Figure 6.4 plots the average load-deflection curves from the data in Figure 6.3 for
selected frequencies. Observing the system load-deflection curves as a function of
frequency closely (Figure 6.4), the frequencies 1 to 5 Hz generally show a trend of
degradation (although increases in load are present as noted previously in the 1 to 3 Hz
range). As the frequency rises out of this range to the 5 to 8 Hz range, frequencies 6 and 8
Hz. tend to map over one another at small deflections (0 to 19 mm deflection) but then

the curve for 8 Hz. begins to show increased degradation.

6.3.2 DYNAMIC DISPLACEMENT AMPLITUDE

The dynamic displacement amplitude, uy, was calculated for each load-deflection
loop. The median dynamic displacement amplitude over the 20 loops for each frequency
in each test is presented in Figure 6.6 and Figure 6.6.

The dynamic displacement amplitude is plotted as a function of the forcing
frequency in Figure 6.5 for the tests conducted at each static deflection increment starting
at 0 mm deflection at the left and increasing to the right at 6.35 mm increments. Due to
resonance effects the dynamic displacement increases dramatically from 1 Hz to the peak
displacement, which typically occurred between 6 and 7.5 Hz, and then deceased. The
maximum displacement amplitude for each curve defines the damped natural frequency
of the system. As the initial static deflection level increased, the peak displacement
amplitude tended to decrease and the natural frequency of the system tended to increase.
For example, peak dynamic displacement amplitudes decrease from about 1.7 mm for the
test at zero static deflection to less than 1.3 at a static deflection 44 mm.

The damped natural frequency appeared to be about 5.5 Hz for the zero static

deflection case, but then increased to a value of around 7 Hz at higher deflection levels.
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Figure 6.5: System dynamic displacement amplitude versus forcing frequency
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Figure 6.6: System dynamic displacement amplitude versus resistance.
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However, the plot exhibits bi-modal resonance effects that are suspected to be the
superposition of the resonance produced by the test cap and the reaction cap or possibly
the effect of variations in gap widths around the piles in the cap.

In Figure 6.6, the solid curves which generally slope downward to the right
represent the dynamic displacement amplitude as a function of frequency and static
deflection level. These curves generally show that as the static displacement goes from
0.0 to 44.45 mm the average load increases and the dynamic displacement amplitude
decreases. However, differences in the dynamic displacement amplitude do not begin to
be distinguishable until the forcing frequency exceeds about 3.5 Hz because the system
shows resonant characteristics between 7 and 7.5 Hz, the curves for these frequencies do
not always follow the general trends. The dashed relatively horizontal curves represent
the dynamic displacement amplitude as a function of the static displacement level. These
curves typically show that as the frequency increases for a given static deflection level,
the system resistance decreases slightly for all tests except that conducted prior to any
loading. At frequencies around 7 Hz the curves pass through resonance and the system
resistance is slightly decreased once again. The peak dynamic amplitude experienced by

the system ranged from 1.2 mm to 1.3 mm

6.3.3 STIFFNESS AND DAMPING

Plots of the dynamic stiffness as a function of forcing frequency are provided for
each static displacement level in Figure 6.7. The plots show stiffness values in the region
of 100 kN/mm to 200 kN/mm. Although there appears to be a trend toward decreasing
stiffness with increasing frequency particularly at low frequencies, it is important to note

that the results obtained below 3 Hz are based on deflection values which are just slightly
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higher than the noise in the system. As noted in Equation 4.1 the force applied by the
eccentric mass shaker increases with frequency. As a result, the applied force at low
frequencies is small, making deflections small. This is turn makes computed stiffness and
damping values at these low frequencies somewhat questionable. Figure 6.7 shows a
trend of decreasing stiffness from 3 to 6 Hz. Thereafter, the system begins to increase in
stiffness. This pattern of decreasing then increasing stiffness is due in part to the
increases and decrease in dynamic displacement amplitude caused by system resonance.
Generally, as deflection increases, the stiffness tends to decrease and this behavior is
reflected in the test results show in Figure 6.7. Apart from these trends, there does not
appear to be any consistent trend in the stiffness as a function of the initial static

deflection level.
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Figure 6.7: Loose silty sand system stiffness versus forcing frequency
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Figure 6.8: Loose silty sand system damping versus forcing frequency

The damping ratio is plotted as a function of forcing frequency for tests at each
static deflection level in Figure 6.8. Apart from the test at zero static deflection, the
damping ratios at the other deflection levels are relatively consistent and fall within a
fairly narrow range. This result indicates that the damping ratio is relatively unaffected by
the static deflection level except at very small deflections. System damping ratios for the
pile cap with the loose silty sand backfill typically ranged from 25% to 35% for
frequencies from about 3 to 6 Hz. However, from 6 to 8 Hz the data shows a decreasing
trend in damping ratio with a typical range of 15% to 25%. The damping ratio for the pile
cap at zero static deflection was much lower with a typical range between 5% and 15%.
At this low deflection level, the passive force on the cap may not be mobilize sufficiently

to produce the higher levels of damping observed at greater deflection levels.
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6.4 BASELINE PILE DYNAMIC RESISTANCE RESPONSE

6.4.1 LOAD-DEFLECTION CURVES

Once again, the average dynamic load and displacement were extracted from the
output file produced by the data processing spreadsheet. The average was taken over
twenty hysteresis loops. Dynamic load-deflection curves are presented in Figure 6.9 and

Figure 6.10 are in terms of deflection and frequency, respectively.

1800 -

1600 -

1400 + . .
Static relaxation curve

1200 -

1000 -

800 - Maximum static curve

Pile (Baseline) Resistance (kN)

600 -
400 -
200 -
I S s 017 \\\\\\\\\\\\\\\\\\\\\\\\\\ | L B B B B B 1
-10 0 10 20 30 40 50
200 J Deflection (mm)

Figure 6.9: Baseline pile static and dynamic system load-deflection curves

The static maximum, relaxation, and post-cycling load-deflection curves are also

shown in these figures for comparison. These dynamic system response load-deflection
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curves for the baseline (no backfill) pile system also correlate well with their appropriate

static curves. In Figure 6.9 a space is not observed between the last point on the dynamic

system load-deflection plot and the superimposed static system post-cycling load-

deflection curve. This is because this test does not have a backfill material that would

continue degrading as the eccentric shaker ramped down as observed with the loose silty

sand system response.
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Figure 6.10: Baseline pile static and dynamic system load-deflection curves in terms of frequency

Observing the system load-deflection curves (Figure 6.11) closely, curves for

frequencies between 1 to 4.5 Hz generally map over each other showing no large

increases in load or large signs of degradations distinguishable to the naked eye; although
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variations are observable. As the frequency rises out of this range to the 5 to 8 Hz range,
degradation is distinguishable. Overall, there seems to be more variation in the results of

these curves as compared to the test with the loose silty sand backfill against the pile cap.
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Figure 6.11: Baseline pile load-deflection curve in terms of frequency

6.4.2 DYNAMIC DISPLACEMENT AMPLITUDE

The pile (baseline) dynamic displacement amplitude expresses similar trends to
that presented in the system response section; however, there are distinct differences (see

Figure 6.12 and Figure 6.13). The dynamic displacement amplitude is plotted as a
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function of the forcing frequency in Figure 6.12 for the tests conducted at each static
deflection increment. A change in the shaker basket weights is easily observed in the
dynamic displacement amplitude versus frequency plot. As mentioned previously, a bil]
modal resonance effect is suspected to be present. Furthermore, the decrease in dynamic
displacement amplitude is observed for the lighter shaker weight. As the initial static
deflection level increased, the peak displacement amplitude tended to decrease and the
natural frequency of the system tended to increase. Peak dynamic displacement amplitude
typically decreased from 1.6 to 1.5 mm for low static deflection levels with the larger
shaker weight to about 0.8 mm at greater static deflection levels with the smaller shaker
weight. By observation, the natural frequency of the system falls in the range of 5 and 7.5

Hz. and increases as the static load level increases.
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Figure 6.12: Pile (baseline) dynamic displacement amplitude versus forcing frequency
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Figure 6.13 shows two distinct differences when compared to the system with
loose silty sand backfill. The first difference is observed in the dashed lines representing
the dynamic displacement amplitude as a function of static displacement, the resistance
decreases much less with increasing frequency relative to the test with backfill. This may
be attributed to the decrease of resistance seen in the system dynamic displacement
amplitude to the loose silty sand backfill. The second difference is the dramatic drop in
displacement amplitude at 25.4 mm. This is observed for all frequencies. This is due to
the change in the shaker basket weight at test 5 (25.4 mm target deflection) mentioned
before. The weight was decreased from 692.2 kN-mm (6127 Ib-in) to 450.1 kN-mm

(3984 Ib-in).
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Figure 6.13: Pile (baseline) dynamic displacement amplitude versus resistance
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6.4.3 STIFFNESS AND DAMPING

Plots of the dynamic pile (baseline) stiffness as a function of forcing frequency
are provided for each static displacement level in Figure 6.14. The plots show each static
displacement test taking on stiffness values in the region of 40 kN/mm to 100 kN/mm for
frequencies between 4 and 8 Hz. This stiffness is about half of that observed for the test
with backfill in place. Figure 6.14 shows a trend of decreasing stiffness from 3 to 5.5 Hz.
Thereafter, the system begins to increase in stiffness. This decrease in stiffness from 3 to
5.5 Hz is likely due in part to the increases in dynamic displacement amplitude caused by
system resonance. This is in harmony with the observation that stiffness typically

decreases as displacement increases.
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Figure 6.14: Pile (baseline) stiffness versus forcing frequency
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The damping ratio for the pile cap alone (baseline condition) is plotted as a
function of forcing frequency for tests at each static deflection level in Figure 6.8. The
test results indicate that damping decreases substantially as the forcing frequency
increases. There does not appear to be any consistent trend in damping with static
deflection level. In addition, the damping exhibited by the 6.35 mm displacement does
not follow the normal trend and will currently be ignored. In the frequency range from 3
Hz to 4.5 Hz. the damping ratio was within the range of 25% to 50%. However, from 4.5
Hz to 8 Hz. the data shows a decreasing trend in damping trailing off to zero between 8

and 9 Hz.
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07 |
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05 -
04 |
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0.1 -
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Frequency (Hz)
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Deflection:19.05 —x— Deflection:25.4 —o— Deflection:31.75
—— Deflection:38.1 —— Deflection:44.45 Deflection:50.8

Figure 6.15: Pile (baseline) damping versus forcing frequency
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6.5 DYNAMIC PASSIVE EARTH RESISTANCE RESPONSE

6.5.1 LOAD-DEFLECTION CURVES

Once again the passive earth resistance was isolated using the difference between
the dynamic response of the pile cap system with loose silty sand backfill and the
baseline pile dynamic response. However, errors inherent to linear interpolation are more
pronounced in the resultant dynamic passive earth resistance curves. When interpolating,
if the slope between two points that straddle the desired deflection is very steep, the
interpolated load may introduce error when solving for the passive earth resistance.
Dynamic load-deflection curves are presented in Figure 6.16 and Figure 6.17 in terms of

deflection and frequency, respectively.

400 ~

350 Static relaxation curve

300 -

Maximum static curve

\

200 ~
150 4

100 4

Passive Earth Resistance (kN)

50 -

\

Static post-cyclic curve

10 20 30 40 50

0
50 j Deflection (mm)

Figure 6.16: Static and dynamic passive earth resistance load-deflection curves
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The static maximum, relaxation and post-cycling load-deflection curves are also
shown in these figures for comparison. By observation, the dynamic load-deflection
curves presented in Figure 6.16 have a wider spread of load values for each tested
deflection. In other words, the drop off in load capacity of the backfill is more

pronounced than that observed for the pile cap alone.

400 1

350

Static relaxation curve

300 |
250 | . .
1 Maximum static curve
200 -

150 |

100 |

Passive Earth Resistance (kN)

50 |
] Static post-cyclic

-10 0 10 20 30 40 50
-50 j Deflection (mm)

Figure 6.17: Static and dynamic passive earth resistance load-deflection curves in terms of frequency

Over the last six tests, excluding the first two tests because of variability, the
percent degradation experienced by the passive earth resistance between 1 to 8 Hz ranged
from ~52% to ~30%, for tests three to eight. These estimates represent the difference of
the load at the beginning of the test to ending of the test. This approach does not account
for the backfill gaining a little strength in certain instances experienced in the 1 to 2.5 Hz

range. In comparison, the percent degradation experienced by the baseline curves
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between 1 to 8 Hz ranged from ~11% to 8%, for tests three to eight; lower values due to
the lack of backfill.

Superimposing the static passive earth resistance curves upon the dynamic passive
earth resistance curves reveals the approximate error that may have been introduced by
the interpolation process. Generally, the error appears to be rather small and the dynamic

curves fit appropriately within the static load-deflection boundaries.

6.5.2 STIFFNESS AND DAMPING

Plots of the dynamic passive backfill stiffness as a function of forcing frequency

are provided for each static displacement level in Figure 6.18. The passive earth stiffness
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—+— Deflection:38.1 —— Deflection:44.45 Deflection:50.8

Figure 6.18: Loose silty sand passive earth stiffness versus forcing frequency
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was calculated by simply subtracting the baseline (no backfill) stiffness from the loose
silty sand stiffness, yielding the passive earth stiffness. The passive earth stiffness clearly
decreases with frequency in the frequency range from 3 to 8.5 Hz. Within this frequency
range the computed stiffness values are in the region of 40 kN/mm to 130 kN/mm. These
passive soil stiffness values are roughly about half of the stiffness of the total system
stiffness and they are about the same or slightly higher than the baseline stiffness values.
The damping ratio for the passive backfill soil alone is plotted as a function of
forcing frequency for tests at each static deflection level in Figure 6.19. The loose silty
sand backfill damping ratio was obtained by first calculating the damping coefficient, c,
for both the system (backfill) and baseline (no backfill) case using Equation 6.7 and

Equation 6.8:

Csystem = é/system *2 ksystem * msystem (6.7)

Cbaseline = é/baseline * 2‘\l kbaseline *m baseline (6-8)

Coackiin = Csystem ~ Chaseline (6.9)
Cbackfill

€ packfill = (6.10)

*
2\/kbackfill mbackfill

where, ( is the damping ratio, k is the stiffness, and m is the mass. Next, the baseline
damping coefficient is subtracted from the system damping coefficient to isolate the loose
silty sand (backfill) damping coefficient (Equation 6.9). Finally, the damping ratio is
recomputed using Equation 6.10 with the known stiffness and mass of the loose silty sand

backfill.
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Damping experienced by the isolated loose silty sand shows a generally
increasing trend with frequency for frequencies from 3 to 8 Hz (see Figure 6.19).
However, there is much more scatter in the damping ratio for the passive soil resistance
than for the baseline or total system cases. Nevertheless, the average damping ratio
shown for the backfill soil increases from about 32% at a frequency of 3 Hz to a value of
about 55% at a value of 8 Hz. This damping ratio for the backfill soil is considerably
higher than that for the pile cap only. The higher damping ratios at higher frequencies
exhibited by the backfill provide the additional damping which allows the system

damping to remain roughly constant over a wide frequency range.
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0.6
05
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Figure 6.19: Loose silty sand passive earth damping versus forcing frequency
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CHAPTER 7- CONCLUSION

Based on the analysis of the cyclic and dynamic testing of a full-scale pile cap

with loose silty sand backfill the following conclusions are presented:

1) Despite the fact that the backfill sand was in a loose state, the passive
earth resistance accounted for approximately 22% of the total system
resistance, with piles contributing approximately 78%.

2) Relaxation of the passive earth resistance at the conclusion of cycling
load typically reduced the resistance by about 70% of its initial
maximum value. Generally, 17% of this decrease can be attributed to
relaxation immediately prior to cyclic loading while the remaining 53%
occurred during the cyclic loading.

3) The Coulomb and Log-spiral methods for estimating Py yielded the
best agreement with measured capacity with under-estimations of 3%
and 10% error, respectively. The Rankine and Caltrans methods
produced results which under- and over-estimated the measured
capacity by 47% and 166%, respectively. The Duncan and Mokwa
hyperbolic method provided the best estimate of the measured load-

deflection curves.
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4)

5)

6)

7)

8)

The dynamic displacement amplitudes during the eccentric mass
shaker tests typically ranged between .4 and 2 mm for frequencies
between 5 and 9.5 Hz. The displacement levels were small enough that
the load-displacement loops remained entirely below the previous
maximum load and represent behavior under reloading conditions
rather than virgin loading conditions.

The dynamic displacement tended to decrease somewhat as the total
static load applied to the system increased. In addition, the natural
frequency falls in the range of 5 and 7.5 Hz. as the static load level
increases.

In general terms, the presence of the loose silty sand backfill nearly
doubled the dynamic stiffness of the pile cap. The stiffness of the
backfill and pile cap combined was typically between 100 and 200
kN/mm for frequencies between 4 and 8 Hz, while the stiffness for the
backfill alone was typically between 40 and 100 kN/mm for
frequencies between 4 and 8 Hz.

Generally, the stiffness of the pile cap and the pile cap with backfill
appears to decrease with frequency until the natural period of the
system is approached but then begins to increase with frequency. This
trend is especially evident for the case with the pile only but is less
evident for the case with the pile cap and backfill.

The damping ratio for the pile cap with backfill typically ranged from

35 to 10% and the damping ratio for the pile cap without backfill

92

www.manaraa.com



ranged from 50 to 8% within the frequency range from 4 to 8§ Hz. In
both cases, the damping ratio is considerably higher than would be
expected for structural materials, but is typical of applications
involving soil-structure interaction. The damping ratio is also higher
than the 10% value suggested for use in some seismic codes.

9) The overall isolated loose silty sand stiffness shows a general decreases
trend with values from 130 to 40 kN/mm for frequencies 4 to 8§ Hz.
However, the isolated loose silty sand damping ratio shows a general

increasing trend with values from 32% to 55% for frequencies 3 and 8

Hz.
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APPENDIX A: INSTRUMENTATION LOCATIONS

The locations of fifty-five instruments are included in this summary with

instrument measurement type, location, and unit type.
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